EuropeanBinomPut_Greeks#
Purpose#
Computes Delta, Gamma, Theta, Vega, and Rho for European put options using binomial method.
Format#
- { d, g, t, v, rh } = EuropeanBinomPut_Greeks(S0, K, r, div, tau, sigma, N)#
- Parameters:
S0 (scalar) – current price.
K (Mx1 vector) – strike prices.
r (scalar) – risk free rate.
div (scalar) – continuous dividend yield.
tau (scalar) – elapsed time to exercise in annualized days of trading.
sigma (scalar) – volatility.
N (scalar) – number of time segments. A higher number of time segments will increase accuracy at the expense of increased computation time.
- Returns:
d (Mx1 vector) – delta.
g (Mx1 vector) – gamma.
t (Mx1 vector) – theta.
v (Mx1 vector) – vega.
rh (Mx1 vector) – rho.
Global Input#
- _fin_thetaType#
scalar, if 1, one day look ahead, else, infinitesimal. Default = 0.
- _fin_epsilon#
scalar, finite difference stepsize. Default = 1e-8.
Examples#
// Specify current price
S0 = 305;
// Specify strike price
K = 300;
// Specify risk free rate
r = .08;
// Specify dividend
div = 0;
// Specify volatility
sigma = .25;
// Specify elapsed time to exercise (annualized days)
tau = .33;
// Call EuropeanBinomPut_Greeks
print EuropeanBinomPut_Greeks(S0, K, r, 0, tau, sigma, 60);
produces:
-0.34988100
0.0015276382
5.0166433
65.431637
-39.652250
Remarks#
The binomial method of Cox, Ross, and Rubinstein (“Option pricing: a simplified approach”, Journal of Financial Economics, 7:229:264) as described in Options, Futures, and other Derivatives by John C. Hull is the basis of this procedure.
Source#
finprocs.src
See also
Functions EuropeanBinomPut_ImpVol()
, EuropeanBinomPut()
, EuropeanBinomCall_Greeks()
, EuropeanBSPut_Greeks()