lncdfn2#
Purpose#
Computes natural log of interval of Normal cumulative distribution function.
Format#
- y = lncdfn2(x, dx)#
- Parameters:
x (MxN matrix) – values at which to evaluate the cumulative distribution function.
dx (KxL matrix) – ExE conformable with x, intervals used to compute the upper bound, x + dx.
- Returns:
lnp (max(M,K) x max(N,L) matrix) –
the log of the integral from x to x+dx of the Normal distribution, i.e.,
\[ln\ Pr(x < X < x+dx)\]
Examples#
// Set x
x = -10;
// Set interval
dx = 29;
print
lncdfN2(x, dx);
-7.6198530241605269e-24
// Set x
x = 0;
// Set interval
dx = 1;
print
lncdfN2(x, dx);
-1.0748623268620716e+00
// Set x
x = 5;
// Set interval
dx = 1;
print
lncdfN2(x, dx);
-1.5068446096529453e+01
Remarks#
The relative error is:
\(\|x\| < 1\) |
and |
\(dx < 1\) |
±1e-14 |
\(1 < \|x\| < 37\) |
and |
\(\|dx\| < 1/\|x\|\) |
±1e-13 |
\(min(x,x+dx) > -37\) |
and |
\(y > -690`\) |
±1e-11 or better |
A relative error of ±1e-14 implies that the answer is accurate to better than ±1 in the 14th digit after the decimal point.
Source#
lncdfn.src
See also
Functions cdfn2()