cdfBvn2#
Purpose#
Returns the bivariate Normal cumulative distribution function of a bounded rectangle.
Format#
- p = cdfBvn2(h, dh, k, dk, r)#
- Parameters:
h (Nx1 vector) – starting points of integration for variable 1.
dh (Nx1 vector) – increments for variable 1.
k (Nx1 vector) – starting points of integration for variable 2.
dk (Nx1 vector) – increments for variable 2.
r (Nx1 vector) – correlation coefficients between the two variables.
- Returns:
p (Nx1 vector) – the integral over the rectangle bounded by h, h + dh, k, and k + dk of the standardized bivariate Normal distribution.
Examples#
Example 1#
// Starting point of integration for variable 1
h = 1;
// Increments for variable 1
dh = -1;
// Starting point of integration for variable 2
k = 1;
// Increments for variable 2
dk = -1;
// Correlation coefficient
rho = 0.5;
print cdfBvn2(h, dh, k, dk, rho);
After running the above code,
1.4105101488974692e-001
Example 2#
print cdfBvn2(1, -1e-15, 1, -1e-15, 0.5);
After running the above code,
4.9303806576313238e-32
Example 3#
print cdfBvn2(1, -1e-45, 1, -1e-45, 0.5);
After running the above code,
0.0000000000000000e+000
Example 4#
trap 2,2;
print cdfBvn2(1, -1e-45, 1, 1e-45, 0.5);
After running the above code,
WARNING: Dubious accuracy from cdfBvn2:
0.000e+000 +/- 2.8e-060
0.0000000000000000e+000
Remarks#
Scalar input arguments are okay; they will be expanded to Nx1 vectors.
cdfBvn2()
computes:
cdfBvn(h + dh, k+ dk, r) + cdfBvn(h, k, r) - cdfBvn(h, k + dk, r) - cdfBvn(h + dh, k, r)
cdfBvn2()
computes an error estimate for each set of inputs. The size of
the error depends on the input arguments. If trap 2 is set, a
warning message is displayed when the error reaches 0.01 abs(y)()
. For an
estimate of the actual error, see cdfBvn2e()
.
See also
Functions cdfBvn2e()
, lncdfbvn2()