AmericanBinomCall_Greeks¶
Purpose¶
Computes Delta, Gamma, Theta, Vega, and Rho for American call options using the binomial method.
Format¶
-
{ d, g, t, v, rh } =
AmericanBinomCall_Greeks(S0, K, r, div, tau, sigma, N)¶ Parameters: - S0 (scalar) – current price.
- K (Mx1 vector) – strike prices.
- r (scalar) – risk free rate.
- div (scalar) – continuous dividend yield.
- tau (scalar) – elapsed time to exercise in annualized days of trading.
- sigma (scalar) – volatility.
- N (scalar) – number of time segments. A higher number of time segments will increase accuracy at the expense of increased computation time.
Returns: - d (Mx1 vector) – delta.
- g (Mx1 vector) – gamma.
- t (Mx1 vector) – theta.
- v (Mx1 vector) – vega.
- rh (Mx1 vector) – rho.
Global Input¶
-
_fin_thetaType¶ scalar, if 1, one day look ahead, else, infinitesmal. Default = 0.
-
_fin_epsilon¶ scalar, finite difference stepsize. Default = 1e-8.
Examples¶
S0 = 305;
K = 300;
r = .08;
sigma = .25;
tau = .33;
div = 0;
{ d, g, t, v, rh } = AmericanBinomCall_Greeks(S0, K, r, 0, tau, sigma, 30);
print d;g;t;v;rh;
produces:
0.66998622
-7.6381912e-16
-14.399673
65.170395
56.676624
Remarks¶
The binomial method of Cox, Ross, and Rubinstein (“Option pricing: a simplified approach,” Journal of Financial Economics, 7:229:264) as described in Options, Futures, and other Derivatives by John C. Hull is the basis of this procedure.
Source¶
finprocs.src
See also
Functions AmericanBinomCall_ImpVol(), AmericanBinomCall(), AmericanBinomPut_Greeks(), AmericanBSCall_Greeks()