glm#

Purpose#

Solves the generalized linear model problems.

Format#

out = glm(y, x, family[, var_names[, categoryIdx[, link]]])#
out = glm(y, x, family[, ctl])
out = glm(dataset_name, formula, family[, ctl])
Parameters:
  • y (Nx1 vector) – the dependent, or response, variable. n is the number of the observations used in the analysis.

  • x (NxK matrix) – the independent, or explanatory, variables. k is the number of the independent variables.

  • dataset_name (string or dataframe) – the name of dataset or dataframe. E.g. "credit.dat", "example.fmt", or binary.

  • formula (string) – formula string of the model. E.g "y ~ X1 + X2", y is the name of dependent variable, X1 and X2 are names of independent variables; E.g "y ~ .", . means including all variables except dependent variable y; E.g "y ~ -1 + X1 + X2", -1 means no intercept model.

  • family (string) –

    the distribution of the dependent variable. Options include:

    • "binomial"

    • "gamma"

    • "normal"

    • "poisson"

    • "inverse gaussian"

  • var_names ((k+1)x1⁢ string array or character matrix) – Optional argument, the names of the variables. The first element must be the name of the dependent variable. e.g., var_names = "admit" $| "gre" $| "gpa" $| "rank", then "admit" will be the label of the response variable, "gre", "gpa", "rank" are the labels of the independent variables corresponding to the order in the X matrix.

  • categoryIdx (1 × k_d matrix) –

    Optional argument, \(k_d \leq k\). \(k_d\) is the categorical variable index of X matrix. categoryIdx specifies the categorical variable columns to be used in the analysis. GAUSS will automatically include dataframe categories as categorical variables. If categoryIdx is specified with a dataframe, the columns specified by categoryIdx will supercede the categories in the dataframe.

    e.g. If categoryIdx = 0, then it means the independent variable does not contain any categorical variables or categories are specified in the dataframe; if \(\text{categoryIdx} = \{ 1\ 4 \}\), then it means that column 1 and column 4 in the X matrix are categorical variables.

    Note

    The function glm() uses the smallest number as the reference category in each categorical variable.

  • link (string) –

    the link function. Options include:

    • "identity"

    • "inverse"

    • "inverse squared"

    • "ln"

    • "logit"

    • "probit"

    • "cloglog"

    • "canonical"

    The default link of each distribution is the canonical link function:

    • Normal – identity;

    • Binomial – logit;

    • Gamma – inverse;

    • Poisson – nature log.

  • ctl (an instance of a glmControl structure) –

    Optional argument. For an instance named ct1, the members are:

    ctl.varNames

    \((k+1) \times 1\) string array or character matrix, the names of the variables. The first element must be the name of the dependent variable.

    ctl.categoryIdx

    \(1 × k_d\) matrix, \(k_d \leq k\). ctl.categoryIdx specifies the categorical variable columns to be used in the analysis. GAUSS will automatically include dataframe categories as categorical variables. If categoryIdx is specified with a dataframe, the columns specified by categoryIdx will supercede the categories in the dataframe.

    e.g. If ctl.categoryIdx = 0, then it means no categorical variable or categories should be determined by dataframe types; if ctl.categoryIdx = { 1 4 }, then it means that column 1 and column 4 in x matrix are categorical variables.

    Note

    glm() function uses the smallest number as the reference category in each categorical variable.

    ctl.link

    string, the link function. Options include:

    • "identity"

    • "inverse"

    • "inverse squared"

    • "ln"

    • "logit"

    • "probit"

    • "cloglog"

    • "canonical"

    The default link is the canonical link for each distribution.

    ctl.constantFlag

    scalar, flag of constant term. The negative number means no intercept model, e.g. "-1". This member will be ignored if a formula string is used.

    ctl.printFlag

    string, "Y" or "N", flag of print to screen. The "N" means no printing.

    ctl.maxIters

    scalar, maximum iterations. The default ctl.maxIters is 25.

    ctl.eps

    scalar, convergence precision. The default is 1e-8.

Returns:

out (struct) –

instance of glmOut struct structure. For an instance named out, the members are:

out.modelInfo

An instance of a glmModelInfo structure. The members are:

out.modelInfo.distribution:

string, the distribution of dependent variable

out.modelInfo.link:

string, the link function used in the procedure

out.modelInfo.yName:

string, the label of dependent variable

out.modelInfo.xNames:

string array, the label of independent variables with intercept and dummy variables for each categorical variable

out.modelInfo.varNames:

string array, the label of variables

out.modelInfo.n:

scalar, the number of valid cases used in the analysis

out.modelInfo.df:

scalar, degree of freedom

out.modelSelect

An instance of a glmModelSelection structure. The members are:

out.modelSelect.deviance:

scalar, the residual deviance from the fit model. The greater the deviance, the poorer the fit.

out.modelSelect.pearson:

scalar, the Pearson Chi-square Statistics. Pearson statistic is an alternative to the deviance for testing the fitof certain GLMs.

out.modelSelect.LL:

scalar, the log likelihood of the fit model

out.modelSelect.dispersion:

scalar, the estimate of the dispersion parameter by Pearson statistic and degree of freedom. It is fixed at 1 when the distribution is “poisson” or “binomial”.

out.modelSelect.aic:

scalar, Akaike information criterion (AIC)

out.modelSelect.bic:

scalar, Bayesian information criterion (BIC)

out.coef

An instance of a glmParameters structure. The members are:

out.coef.estimates:

matrix, the estimate value of parameters

out.coef.se:

matrix, the standard error of parameters

out.coef.testStat:

matrix, the statistic value of parameters

out.coef.testStatName:

string, the name of test statistic

out.coef.pvalue:

scalar, the p_value of parameters

out.yhat

scalar, the fitted mean values for response variable

out.residuals

matrix, residuals on the linear predictor scale, equal to the adjusted response value minus the fitted linear predictors

out.covmat

matrix, the covariance matrix for the parameters

out.corrmat

matrix, the correlation matrix for the parameters

out.constantFlag

string, flag of constant term.

out.iteration

scalar, the number of iterations of IWLS used

out.maxIters

scalar, the maximum iterations

out.eps

scalar, convergence precision

Examples#

Ordinary linear regression with simulated data matrices.#

// Set random number seed for repeatable random numbers
rndseed 86;

// Simulate data using rndn function
x = rndn(100, 4);
y = rndn(100, 1);

// Call glm function with the minimum inputs
call glm(y, x, "normal");

This example will compute a least squares regression of y on x. The results will be shown in the program input / output window. The return values are discarded by using a call statement.

Generalized Linear Model
===================================================================
Valid cases:             100           Dependent variable:        y
Degrees of freedom:       95           Distribution          normal
Deviance:             99.370           Link function:      identity
Pearson Chi-square:   99.370           AIC:                 295.156
Log likelihood:     -141.578           BIC:                 310.787
Dispersion:                1           Iterations:              310
Number of vars:            5
===================================================================
                                   Standard                    Prob
Variable               Estimate       Error     t-value        >|t|
-------------------------------------------------------------------

Constant               0.067084     0.10233     0.65556     0.51369
x1                    -0.027278    0.097162    -0.28074     0.77952
x2                     -0.10747    0.090888     -1.1825     0.23996
x3                      0.27659    0.093397      2.9615    0.003867
x4                     0.067915     0.11099      0.6119     0.54206
===================================================================

Logistic regression using a formula string to reference data in a CSV file containing categorical variables.#

// Create string with fully pathed file name
fname = getGAUSShome("examples/binary.csv");

// Load data and specify rank and admit as
// categorical variables
data = loadd(fname, "cat(admit) + cat(rank) + gre + gpa");

/*
** Call glm function with formula string
*/
call glm(data, "admit ~ rank + gre + gpa", "binomial");

The code above will produce the following output. Note that \(rank = 1\) is used as the base case.

Generalized Linear Model
===================================================================
Valid cases:             400           Dependent variable:    admit
Degrees of freedom:      394           Distribution        binomial
Deviance:                459           Link function:         logit
Pearson Chi-square:      397           AIC:                 470.517
Log likelihood:         -229           BIC:                 494.466
Dispersion:                1           Iterations:              494
Number of vars:            6
===================================================================
                                   Standard                    Prob
Variable               Estimate       Error     z-value        >|z|
-------------------------------------------------------------------

CONSTANT                  -3.99        1.14     -3.5001  0.00046503
rank: 2                -0.67544     0.31649     -2.1342    0.032829
rank: 3                 -1.3402     0.34531     -3.8812  0.00010394
rank: 4                 -1.5515     0.41783     -3.7131  0.00020471
gre                   0.0022644    0.001094      2.0699    0.038465
gpa                     0.80404     0.33182      2.4231    0.015388
===================================================================

Note: Dispersion parameter for BINOMIAL distribution taken to be 1

Logistic regression for each subset of a categorical variable#

In the example below, we will estimate a logistic regression model for the case where time equals “Lunch” and another where time equals “Dinner”, using the by keyword.

// Load all variables from the dataset
tips = loadd(getGAUSShome("examples/tips2.dta"));

// Estimate a logistic regression model for:
//     time = Lunch
//     time = Dinner
call glm(tips, "smoker ~ total_bill + tip + sex + by(time)", "binomial");
====================================================================================
time: Lunch
====================================================================================

Generalized Linear Model
======================================================================
Valid cases:              68           Dependent variable: smoker: Yes
Degrees of freedom:       64           Distribution           binomial
Deviance:               85.8           Link function:            logit
Pearson Chi-square:     67.8           AIC:                     93.787
Log likelihood:        -42.9           BIC:                    102.665
Dispersion:                1           Iterations:                 102
Number of vars:            4
=====================================================================
                                     Standard                    Prob
Variable               Estimate         Error     z-value        >|z|
---------------------------------------------------------------------

CONSTANT                -1.0674      0.69733      -1.5307     0.12583
total_bill            -0.023941     0.057074     -0.41947     0.67487
tip                     0.20882      0.35988      0.58025     0.56175
sex: Male               0.46393      0.52191      0.88891     0.37405
=====================================================================

Note: Dispersion parameter for BINOMIAL distribution taken to be 1


====================================================================================
time: Dinner
====================================================================================

Generalized Linear Model
======================================================================
Valid cases:             179           Dependent variable: smoker: Yes
Degrees of freedom:      175           Distribution           binomial
Deviance:                235           Link function:            logit
Pearson Chi-square:      180           AIC:                    243.159
Log likelihood:         -118           BIC:                    255.909
Dispersion:                1           Iterations:                 255
Number of vars:            4
======================================================================
                                       Standard                   Prob
Variable                Estimate          Error     z-value       >|z|
----------------------------------------------------------------------

CONSTANT                 -0.5111       0.4596        -1.112    0.26612
total_bill              0.043252     0.022504         1.922    0.05461
tip                     -0.19582      0.14327       -1.3668     0.1717
sex: Male               -0.33096       0.3395      -0.97485    0.32964
======================================================================

Note: Dispersion parameter for BINOMIAL distribution taken to be 1

Running a no intercept model from a STATA DTA file.#

new;
cls;

// File name with full path
fname = getGAUSShome("examples/auto2.dta");

// Load all variables in the auto2 dataset
data = loadd(fname);

// Declare 'fit' to be a glmOut structure
struct glmOut fit;

// Call 'glm' with no intercept model
fit = glm(data, "mpg ~ -1 + weight + gear_ratio",  "normal");

After running the code above, the output is :

Generalized Linear Model
===================================================================
Valid cases:              74           Dependent variable:      mpg
Degrees of freedom:       72           Distribution          normal
Deviance:           1.33e+03           Link function:      identity
Pearson Chi-square: 1.33e+03           AIC:                 429.817
Log likelihood:         -212           BIC:                 436.729
Dispersion:               18           Iterations:              436
Number of vars:            2
===================================================================
                                   Standard                    Prob
Variable               Estimate       Error     t-value        >|t|
-------------------------------------------------------------------

weight               -0.0014124  0.00043663     -3.2348   0.0018396
gear_ratio               8.4236     0.44635      18.872  1.3699e-29
===================================================================

Running a no intercept model from a SAS sas7bdat file.#

new;
cls;

// File name with full path
fname = getGAUSSHome("examples/detroit.dta");

// Load dataset
data = loadd(fname);

// Declare 'fit' to be a glmOut structure
struct glmOut fit;

// Call 'glm' with no intercept model
fit = glm(data, "homicide ~ unemployment + hourly_earn",  "normal");

After running the code above, the output is :

Generalized Linear Model
===================================================================
Valid cases:              13           Dependent variable: homicide
Degrees of freedom:       10           Distribution          normal
Deviance:                534           Link function:      identity
Pearson Chi-square:      534           AIC:                  93.189
Log likelihood:        -42.6           BIC:                  95.448
Dispersion:               53           Iterations:               95
Number of vars:            3
===================================================================
                                   Standard                    Prob
Variable               Estimate       Error     t-value        >|t|
-------------------------------------------------------------------

CONSTANT                -35.983      9.4372     -3.8128   0.0034133
unemployment         -0.0049983     0.91882  -0.0054399     0.99577
hourly_earn              15.487      2.2427      6.9057  4.1653e-05
===================================================================

Ordinary linear regression with categorical variables in a matrix.#

Sometimes it is necessary or preferable to reference model variables by index rather than name. This example illustrates the use of numeric indexing of model variables and how to specify categorical variables in a matrix.

new;
cls;

// Create filename with full path
dataset = getGAUSSHome("examples/credit.dat");

// Import all data from the dataset
data = loadd(dataset);

// Select the independent variables by index
x = data[., 1 7 9] ;

// Select the dependent variable by index
y = data[., 11];

// Get the names of the variables in the dataset
label = getColNames(data, 11|1|7|9);

// Specify that the 2nd and 3rd columns in 'x' are categorical variables
categoryIdx = { 2 3 };

// Call glm function with three necessary inputs and two optional inputs
call glm(y, x, "normal", label, categoryIdx);

label is a string array containing all of the variable names from credit.dat returned from the getColNames() function. The first element must be the label of the dependent variable, followed by the labels for the independent variables corresponding to the order in the x matrix. "Gender" and "Married" are categorical variables. The glm() chooses the smallest number(1) as the base category in each categorical variable. The following shows the output:

Generalized Linear Model
===================================================================
Valid cases:             400           Dependent variable:  Balance
Degrees of freedom:      396           Distribution          normal
Deviance:           6.61e+07           Link function:      identity
Pearson Chi-square: 6.61e+07           AIC:                5951.278
Log likelihood:    -2.97e+03           BIC:                5971.235
Dispersion:           166936           Iterations:             5971
Number of vars:            4
===================================================================
                                   Standard                    Prob
Variable               Estimate       Error     t-value        >|t|
-------------------------------------------------------------------

Constant                 246.19      46.535      5.2903  2.0256e-07
Gender: 2                24.577      40.889     0.60108     0.54813
Married: 2              -21.279      41.963    -0.50708     0.61238
Income                   6.0626     0.58077      10.439  1.0685e-22
===================================================================

Ordinary linear regression with categorical variables in a dataframe.#

new;
cls;

// Import data as dataframe
// with `Gender` and `Married` as
// categorical variables
fname = getGAUSSHome("examples/credit.dat");
credit = loadd(fname, "Income + cat(Gender) + cat(Married) + Balance");

// Relabel categories for `Gender`
credit = setcollabels(move(credit), "Male"$|"Female", 0|1, "Gender");

// Relabel categories for `Married`
credit = setcollabels(move(credit), "Single"$|"Married", 0|1, "Married");

// Call glm
call glm(credit, "Balance ~ Gender + Married + Income", "normal");

The categorical variables code:"Gender" and code:"Married" are now automatically detected by GAUSS, based on their dataframe types. In addition, the variable names are automatically detected.

Generalized Linear Model
===================================================================
Valid cases:             400           Dependent variable:  Balance
Degrees of freedom:      396           Distribution          normal
Deviance:           6.61e+07           Link function:      identity
Pearson Chi-square: 6.61e+07           AIC:                5951.278
Log likelihood:    -2.97e+03           BIC:                5971.235
Dispersion:           166936           Iterations:             5971
Number of vars:            4
===================================================================
                                   Standard                    Prob
Variable               Estimate       Error     t-value        >|t|
-------------------------------------------------------------------

CONSTANT                 246.19      46.535      5.2903  2.0256e-07
Gender: Female           24.577      40.889     0.60108     0.54813
Married: Married        -21.279      41.963    -0.50708     0.61238
Income                   6.0626     0.58077      10.439  1.0685e-22
===================================================================

Using a control structure#

Use a glmControl structure to control the link function and a glmOut structure to store the reuslts for a Probit regression with categorical variables.

new;

// Create file name with full path
fname = getGAUSShome("examples/binary.csv");

// Load data and specify rank and admit as
// categorical variables
data = loadd(fname, "cat(admit) + cat(rank) + gre + gpa");

// Declare 'binary_ctl' as a glmControl structure
struct glmControl binary_ctl;

// Specify the link function
binary_ctl.link = "probit";

// Save out the results in glmOut structure
struct glmOut out1;
out1 = glm(data, "admit ~ factor(rank) + gre + gpa", "binomial", binary_ctl);

After running above code, the model estimates and diagnostic information will be stored in the out1 structure and the following output report will be displayed.

Generalized Linear Model
===================================================================
Valid cases:             400           Dependent variable:    admit
Degrees of freedom:      394           Distribution        binomial
Deviance:                458           Link function:        probit
Pearson Chi-square:      398           AIC:                 470.413
Log likelihood:         -229           BIC:                 494.362
Dispersion:                1           Iterations:              494
Number of vars:            6
===================================================================
                                   Standard                    Prob
Variable               Estimate       Error     z-value        >|z|
-------------------------------------------------------------------

CONSTANT                -2.3868     0.67395     -3.5416  0.00039773
rank: 2                 -0.4154     0.19498     -2.1305     0.03313
rank: 3                -0.81214     0.20836     -3.8978  9.7067e-05
rank: 4                 -0.9359     0.24527     -3.8158  0.00013576
gre                   0.0013756  0.00065003      2.1162    0.034329
gpa                     0.47773      0.1972      2.4226     0.01541
===================================================================

Note: Dispersion parameter for BINOMIAL distribution taken to be 1

A Poisson regression model with categorical variables, using matrix inputs.#

new;
cls;

// Load all data from the .fmt matrix file
fname = getGAUSShome() $+ "examples/poisson_sim.fmt";
data = loadd(fname);

// Index dependent variable, 'num_award'
y = data[., 2];

// Index independent variable, 'prog' and 'math'
x = data[., 3 4];

/*
** Specify the variable names
** since the matrices do not contain variable names
*/
string var_names = { "num_award", "prog", "math" };

/*
** Indicate that the first variable in 'x'
** is a categorical variable
*/
category_idx = 1;

// specify the link function, 'ln'
link = "ln";

/*
** Declare the glmOut structure
** All the results are saved in the out_poi
*/
struct glmOut out_poi;
out_poi = glm(y, x, "poisson", var_names, category_idx, link);

After running above code, the output is:

Generalized Linear Model
====================================================================
Valid cases:             200           Dependent variable: num_award
Degrees of freedom:      196           Distribution          poisson
Deviance:                189           Link function:             ln
Pearson Chi-square:      212           AIC:                  373.505
Log likelihood:         -183           BIC:                  386.698
Dispersion:                1           Iterations:               386
Number of vars:            4
====================================================================
                                  Standard                      Prob
Variable               Estimate       Error     z-value         >|z|
--------------------------------------------------------------------

CONSTANT                -5.2471     0.65845     -7.9689   1.6014e-15
prog: 2                  1.0839     0.35825      3.0254     0.002483
prog: 3                 0.36981     0.44107     0.83844      0.40179
math                   0.070152    0.010599      6.6186    3.625e-11
====================================================================

Note: Dispersion parameter for POISSON distribution taken to be 1

Using a glmOut structure to save result for a Gamma regression with categorical variables.#

new;
cls;

// File name with full path
file = getGAUSShome("examples/yarn.xlsx");

// Read 4th column as a numeric matrix
y = xlsReadM(file, "D2:D28");

// Read columns 1, 2 and 3 as character data
x = xlsReadSA(file, "A2:C28");

// Find unique categorical levels
from = uniquesa(x[., 1]);

// Numeric categorical levels
to = { 1, -1, 0 };

// Reclassify the character to number
x = reclassify(x, from, to);

// Declare 'ctl_gamma' as a glmControl struct
struct glmControl ctl_gamma;

/*
** Read variable names and transpose
** to a column vector
*/
ctl_gamma.varNames = xlsReadSA(file, "A1:D1")';

// Specify categorical columns
ctl_gamma.categoryIdx = { 1 2 3 };

// Specify link function
ctl_gamma.link = "ln";

// Declare 'out_gamma' to be a glmOut structure
struct glmOut out_gamma;

// Call 'glm' and fill 'out_gamma' with results
out_gamma = glm(y, x, "gamma", ctl_gamma);

In this example, the dataset yarn.xlsx is used to perform a Gamma regression. After running the code above, the output is :

Generalized Linear Model

Valid cases:                   27     Dependent Variable:                yarn_length
Degrees of freedom:            20     Distribution:                            gamma
Deviance:                  0.7089     Link function:                              ln
Pearson Chi-square:        0.6917     AIC:                                     336.5
Log likelihood:            -160.3     BIC:                                     346.9
Dispersion:               0.03458     Iterations:                                  5

                                           Standard                              Prob
Variable                  Estimate            Error          t-value             >|t|
----------------      ------------     ------------     ------------     ------------
CONSTANT                    6.4841          0.09469           68.477         < 0.0001
amplitude       0           0.9136         0.087666           10.421         < 0.0001
                1           1.6791         0.087666           19.153         < 0.0001
load            0         -0.64738         0.087666          -7.3846         < 0.0001
                1          -1.2654         0.087666          -14.435         < 0.0001
cycles          0         -0.31872         0.087666          -3.6356       0.00164628
                1          -0.7701         0.087666          -8.7844         < 0.0001

Using a “*.dat” file directly in glm() for a Inverse Gaussian distribution.#

new;
cls;

// File name with full path
fname = getGAUSShome("examples/clotting_time.dat");

// Load plasma and lot1 variables
data = loadd(fname, "plasma + lot1");

// Declare 'fit_inv' to be a glmOut structure
struct glmOut fit_inv;

// Call 'glm' and fill 'fit_inv' with results
fit_inv = glm(data, "plasma ~ lot1",  "inverse gaussian");

After running the code above, the output is:

Generalized Linear Model

Valid cases:                    9     Dependent Variable:                     plasma
Degrees of freedom:             7     Distribution:                 inverse gaussian
Deviance:                 0.03557     Link function:                 inverse squared
Pearson Chi-square:       0.03511     AIC:                                      71.1
Log likelihood:            -32.55     BIC:                                     71.69
Dispersion:              0.005016     Iterations:                                  6


                                          Standard                              Prob
Variable                 Estimate            Error          t-value             >|t|
----------------     ------------     ------------     ------------     ------------
CONSTANT               -0.0034177       0.00074729          -4.5735       0.00256355
lot1                   0.00019223       4.0768e-05           4.7154       0.00216923

Running a linear regression model using data transformations with HDF5 file.#

new;
cls;

// Give a fully pathed HDF5 file name
file_name = getGAUSShome("examples/nba_data.h5");

/*
** Add the file schema "h5://" to the front
** Given a dataset name in above file
** and the dataset name "/nba_data" to the back
*/
dataset = "h5://" $+ file_name $+ "/nba_data";

// Load 'Weight', 'Height', and  'Age' data
data = loadd(dataset, "Weight + Height + Age");

/*
** Define the formula for the linear model,
** using 'ln' data transformation
*/
formula = "ln(Weight) ~ ln(Height) + Age";

// Call 'glm'
call glm(data, formula,  "normal");

After running the code above, the output is :

Generalized Linear Model

Valid cases:                  505     Dependent Variable:                 ln(Weight)
Degrees of freedom:           502     Distribution:                           normal
Deviance:                   2.268     Link function:                        identity
Pearson Chi-square:         2.268     AIC:                                     -1289
Log likelihood:             648.4     BIC:                                     -1272
Dispersion:              0.004517     Iterations:                                  2


                                          Standard                              Prob
Variable                 Estimate            Error          t-value             >|t|
----------------     ------------     ------------     ------------     ------------
CONSTANT                  -4.6683          0.29683          -15.727         < 0.0001
ln(Height)                 2.2842         0.067824           33.678         < 0.0001
Age                     0.0029575       0.00069211           4.2731         < 0.0001

Remarks#

  1. The glmControl structure stores the user defined options.

  2. The glmOut structure stores all the results after running glm() function.

  3. For the categorical variables, glm() chooses the smallest value as the base category. You can change the base category by using the reclassify or recode functions to change the base category with the smallest value in the variable.

  4. The dispersion parameter is calculated based on Pearson Chi-square Statistics.

  5. The glm() function cannot handle missing values. You can use packr() function to delete the rows of a matrix that contain any missing values.

  6. The weights for each observation are equal.

  7. The supported dataset types are CSV, Excel (XLS, XLSX), HDF5, GAUSS Matrix (FMT), GAUSS Dataset (DAT), Stata (DTA) and SAS (SAS7BDAT, SAS7BCAT).

For HDF5 files, the dataset must include file schema and both file name and dataset name must be provided, e.g. glm("h5://C:/gauss23/examples/testdata.h5/mydata", formula, family)

Source#

glm.src

See also

Functions ols(), olsmt(), reclassify(), packr()