Computes lognormal pseudo-random numbers with the choice of underlying random number generator.


x = rndLogNorm(r, c, mu, sigma)
{ x, newstate } = rndLogNorm(r, c, mu, sigma, state)
  • r (scalar) – number of rows of resulting matrix.
  • c (scalar) – number of columns of resulting matrix.
  • mu (matrix or vector or scalar) – mean, scalar or ExE conformable matrix with r and c.
  • sigma (matrix or vector or scalar) – standard deviation, scalar or ExE conformable matrix with r and c.
  • state (scalar or opaque vector) –

    Optional argument.

    scalar case

    state = starting seed value only. If -1, GAUSS computes the starting seed based on the system clock.

    opaque vector case

    state = the state vector returned from a previous call to one of the rnd random number functions.

  • x (RxC matrix) – lognormal distributed random numbers.
  • newstate (Opaque vector) – the updated state.


The properties of the pseudo-random numbers in x are:

\[ \begin{align}\begin{aligned}\begin{split}E(x) = exp(\mu - 0.5*\sigma^2)\\\end{split}\\Var(x) = (exp(\sigma^2) - 1) * exp(2*\mu + \sigma^2)\end{aligned}\end{align} \]

r and c will be truncated to integers if necessary.

See also

Functions rndCreateState(), rndStateSkip()