gmmFitIV#
Purpose#
Estimate instrumental variables model using the generalized method of moments.
Format#
- gOut = gmmFitIV(y, x[, gCtl])#
- gOut = gmmFitIV(y, x[, z[, gCtl]])
- gOut = gmmFitIV(dataset, formula[, gCtl])
- gOut = gmmFitIV(dataset, formula[, inst_list[, gCtl]])
- Parameters:
y (Nx1 matrix) – dependent data vector
x (NxK matrix) – independent data matrix.
z (NxK matrix) – Optional input, instrumental variables data matrix. If z is excluded, the linear model of y and x is estimated.
dataset (string) – name of dataset.
formula (string) –
formula string of the model.
e.g
"y ~ X1 + X2"
,y
is the name of dependent variable,X1
andX2
are names of independent variables;e.g.
"y ~ ."
,.
means including all variables except dependent variabley
.inst_list (string) –
Optional input. Formula string representing the instrumental variables to be included in the model.
e.g.
"pcturban + price + age + zip"
specifies that the variables pcturban, price, age, and zip should be used as instrumental variables.gCtl (struct) –
Optional argument. An instance of an
gmmControl
structuregCtl.method
string, GMM method to be used.
- ”onestep”:
One-step GMM
- ”twostep”:
Two-step GMM
- ”iterative”:
Iterative GMM
- ”CU”:
Continuous updating GMM.
Default =
"twostep"
gCtl.vceType
string, variance-covariance matrix type.
- ”unadj”:
Unadjusted, non-robust SE.
- ”robust”:
Heteroscedastic robust SE.
- ”hac”:
Heteroscedastic-autocorrelation robust SE.
Default =
"robust"
gCtl.wType
string, type of weight matrix used. Ignored for one-step case.
- ”unadj”:
Unadjusted, non-robust SE.
- ”robust”:
Heteroscedastic robust SE.
- ”hac”:
Heteroscedastic-autocorrelation robust SE.
Default =
"robust"
gCtl.hacKernel
string, type of kernel used for estimation of HAC robust weight matrix and/or variance-covariance matrix. Ignored if not using
"hac"
weight matrix and/or variance-covariance matrix.Note
Bandwidth is determined using the Newey-West optimal lag length selection method.
- ”bartlett”:
Bartlett kernel.
- ”parzen”:
Parzen kernel.
- ”quad”:
Quadraticspectral kernel.
Default =
"bartlett"
gCtl.gmmlags
Scalar, Scalar, user specified lag truncation for HAC weight matrix and variance computations.
gCtl.wInitMat
data matrix, initial weight matrix to be used. If specified the matrix is used as initial weighting matrix and overrides specification of gCtl.wInit*.
gCtl.wInit
string, type of initial weight matrix used. If data matrix, the specified matrix is used as initial weighting matrix. Else:
- ”identity”:
Identity matrix.
- ”unadj”:
Weight matrix \(1/n*inv(Z'Z)\). Assumes moments are i.i.d. Default =
"unadj"
gCtl.gIter
instance of
gmmIterative
structure. This structure houses the tolerances for convergence for iterative GMM. Ignored if iterative GMM is not specified. The members include:- gCtl.gIter.maxIter:
scalar, maximum number of iterations. Default = 500.
- gCtl.gIter.paramTol:
scalar, tolerance level for convergence based on parameter estimates. Default = 1e-6.
- gCtl.gIter.wTol:
scalar, tolerance level for convergence based on weight matrix estimates. Default = 1e-6.
gCtl.noconstant
scalar, specified to indicate if constant is included in model. Only valid if data vector input method is used. Set to 1 to exclude constant from model. Constant is always first parameter in parameter vector. Default = 0 [constant included].For dataset and string formula method to remove constant from model specify
"-1"
as first dependent variable: e.g.:"y ~ -1 + X1 + X2"
gCtl.varNames
string array, dependent variable names. Only used for data vector input case. Default =
X1, X2, ...
gCtl.instNames
string array, instrumental variable names. Only used for data vector input case. Default =
Z1, Z2, ...
- Returns:
gOut (struct) –
instance of
gmmOut
struct containing the following members:gOut.paramEst
column vector of final estimates. Constant, if included in model, is the first element.
gOut.wFinal
matrix, final weighting matrix.
gOut.covPar
matrix, estimated variance-covariance matrix.
gOut.numParams
scalar, number of parameters estimated in model.
gOut.numMoments
scalar, number of moments.
gOut.numObs
scalar, number of observations.
gOut.numInstruments
scalar, number of instruments.
gOut.numMoments
scalar, number of moments.
gOut.JStat
scalar, Hansen statistic of overidentification.
gOut.df
scalar, degrees of freedom.
Examples#
Formula String#
new;
cls;
/*
** Declare gmm_result to be a gmmOut struct
** to hold the results of the estimation
*/
struct gmmOut gmm_result;
// Create fully pathed dataset file name string
auto_dset = getGAUSSHome("examples/auto");
// Perform estimation, using a formula string specification
gmm_result = gmmFitIV(auto_dset, "mpg ~ weight + length");
The above code will print out the following report:
Generalized Method of Moments
====================================================================================
Valid cases: 74 Dependent variable: mpg
Number of moments: 0 Degrees of freedom: 71
Number of vars: 3
====================================================================================
Standard Prob Lower Upper
Variable Estimate Error t-value >|t| Bound Bound
------------------------------------------------------------------------------------
CONSTANT 47.885 7.506 6.3795 1.5783e-08 33.173 62.597
weight -0.0038515 0.0019472 -1.978 0.051812 -0.0076679 -3.5022e-05
length -0.079593 0.067753 -1.1748 0.24402 -0.21239 0.053203
====================================================================================
Instruments: CONSTANT, weight, length
Data Matrix#
new;
cls;
data = loadd(getGAUSSHome("examples/hsng.dat"));
y = data[., 12];
x = data[., 11 7];
z = data[., 7 8 14:16];
/*
** Declare gctl to be a gmmControl struct
** and fill with default settings
*/
struct gmmControl gctl;
gctl = gmmControlCreate();
// Set desired estimation options
gctl.wInit = "unadj";
// Set method
gctl.method = "twostep";
// Set variance type
gctl.vceType = "robust";
// Weight matrix type
gctl.wType = "robust";
struct gmmOut gOut;
gOut = gmmFitIV(y, x, z, gctl);
The above code will print out the following report:
Generalized Method of Moments
====================================================================================
Valid cases: 50 Dependent variable: rent
Number of moments: 0 Degrees of freedom: 47
J-stat 6.98 Probability of J: 0.0727
Number of vars: 3
====================================================================================
Standard Prob Lower Upper
Variable Estimate Error t-value >|t| Bound Bound
------------------------------------------------------------------------------------
CONSTANT 112.12 10.546 10.632 4.2698e-14 91.453 132.79
hsngval 0.0014643 0.00040376 3.6268 0.00070459 0.00067297 0.0022557
pcturban 0.76155 0.26439 2.8804 0.0059646 0.24335 1.2797
====================================================================================
Instruments: Constant, pcturban, faminc, reg2, reg3, reg4
Remarks#
The supported dataset types are CSV, Excel (XLS, XLSX), HDF5, GAUSS Matrix (FMT), GAUSS Dataset (DAT), Stata (DTA) and SAS (SAS7BDAT, SAS7BCAT).
See also
Functions gmmControlCreate()
, gmmFit()